

BEFORE STARTING

HOUSEKEEPING

- Turn on your system's sound to hear the streaming presentation
- Questions? Submit them into the question box!
- The webinar on Twitter @ICTFOOTRPRINTeu

European Framework Initiative for Energy & Environmental Efficiency in the ICT Sector

Webinar: Low Carbon ICT Green Rating Investment Tool, Carbon Fee Report & Data Centers

In parternship with:

Tuesday, 21st November 2017

Speakers

Jakub Bartnicki
Energy & Built Environment Services Manager
Trust EPC South & Bureau Veritas

Adina Braha-Honciuc

Government Affairs Manager – EU Policy

Microsoft

Derek Webster

CEO - Data Center Consultancy Andget

Former EMEA Head of Data Center Development - YAHOO

Former Board member - EUDCA

Silvana Muscella - Moderator Founder & CEO Trust-IT Services

The ICTFOOTPRINT.eu initiative -In a nutshell

Mission

Become "THE" consolidated effort that, at European level, raises awareness on metrics, methodologies & best practices in measuring the energy and environmental efficiency of the ICT-sector, to facilitate their broad deployment & uptake.

Stakeholders

ICT Intensive SME

ICT Suppliers

Cities & Public Administration

Standard Development Organisations

Helping you choose your Low Carbon & Energy Efficiency in ICT

Main Outputs for our stakeholders

ictfootprint.eu

Marketplace

Buyer: Find sustainable ICT suppliers & publish ICT sustainable needs.

Seller: publish ICT sustainable services or procurements & search for clients.

Webinars

Know more on sustainable ICT: get practical guides from a highly qualified experts in the Sustainable ICT sector and learn how to apply them in your organisation.

Help Desk
In 5 languages

Get support about how to decrease your carbon footprint & implement ICT energy efficiency standards with Online Assistance (EN, FR, ES, DE, IT).

Success Stories

Best practices in Sustainable ICT. Search how players like you got energy savings & carbon footprint reduction. Or even showcase your success story!

Self Assessment
Centre

Measure your own carbon footprint and start learning how to become sustainable thanks to ICT standards & methodologies. AVAILABLE SOON

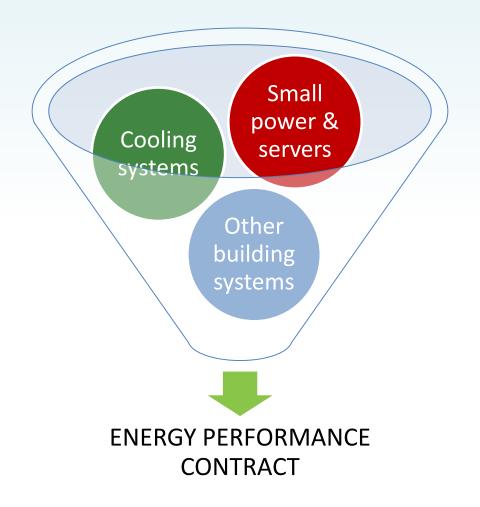
Join us and get energy savings by choosing low carbon ICT

European Framework Initiative for Energy & Environmental Efficiency in the ICT Sector

Green Rating for Energy Performance Contracts
Standardising your technical building improvement

Jakub Bartnicki
Bureau Veritas & Trust EPC South

Tuesday, 21st November 2017



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 649772

EPCs in ICT intensive organisations

Trust-EPC-South

- The Trust EPC South project aims to unleash the tertiary sector market potential for energy efficiency investments in Southern Europe by developing a new investment assessment instrument backed by an established building rating methodology (Green Rating™). Such instrument shall support energy service companies (EPC providers and facilitators), financing institutions and tertiary market actors thanks to the application of a standardised methodology to the investment assessment and decision processes, ultimately allowing to reduce barriers to energy efficiency investments.
- Trust EPC South is a project financed by the European Union's Horizon 2020 programme

8

EPC Assessment

Profitability projection Risk assessment

Link to the GREPCon video: https://www.youtube.com/watch?v=rD2aw5_NP68

EPC Assessment

GREPCon PROJECT RATING

XXX

Energy Performance Contract Potential

Financial savings: 241.609 €/year Energy savings: 1.990.560 kWh/year

Energy savings percentage:

23,62 %

Carbon savings: 682.501 kgCO2/year

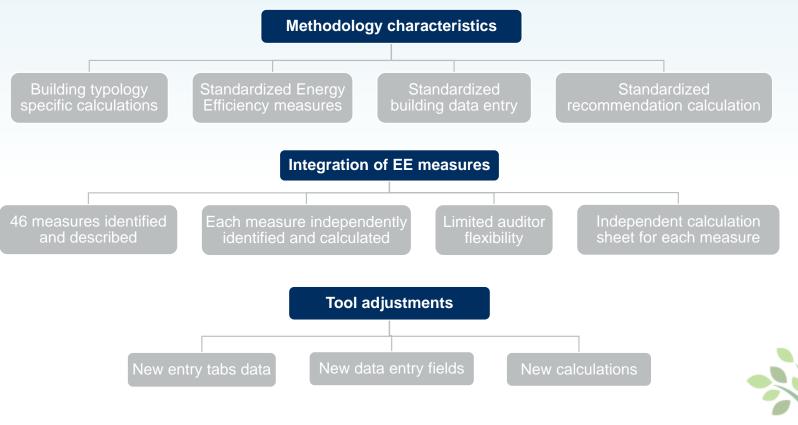
Investment: 1.234.660 € Equity percentage:

IRR: 29,0 %

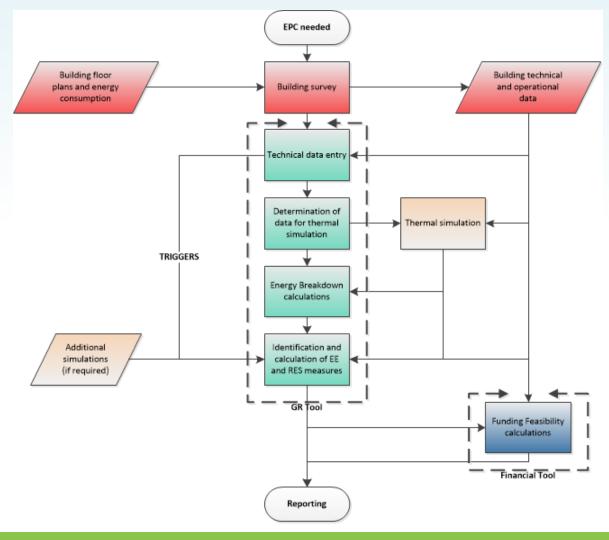
NPV: 260.727 €

avg. DSCR: 1,9

min. DSCR: 1,4


Discounted payback: years

LABEL	DESCRIPTION						
High Profitability, low likelihood of bad performance, very robust structure, short payback time, with a high level of security in the loan							
В	Medium-High Profitability, medium-low likelihood of bad performance, medium-short payback time, with a medium-high level of security in the loan						
Medium Profitability, medium likelihood of bad performance, medium payback time, with a medium lev of security in the financing							
D	Medium-Low Profitability, medium-high likelihood of bad performance, medium-long payback time, with a medium-low level of security in the financing						
E	Low Profitability, high likelihood of bad performance, long payback time, with a low level of security in the financing						


Standardising technical approach

GREPCon – the process

GREPCon – the process

Each measure is identified and calculated independently:

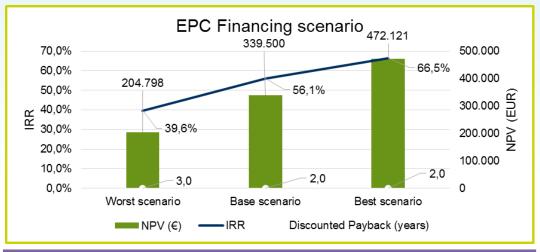
Energy use	Measure n.º	Title					Crite	eria
	1	Substitution of conventional lamps	Halogen lamps		Incandescent lamps	Fluocompact lamps	T12 Fluorescent tubes	T8 Fluorescent tubes
	2	Replacement of lamps ballast	Standard ballasts					
Lighting	3	Occupancy and presence sensors	Central switching		Local manual switching	Motion sensors to zones other than office	Daylight sensors	No controls (operation 24/
	4	Photocell to dim luminous flux based on natural light	Central switching		Local manual switching	Motion sensors to zones other than office	Motion sensors including office	No controls (operation 24/
	5	Occupancy and presence sensors combined with photocell	Central switching		Local manual switching	Motion sensors to zones other than office	Motion sensors including office	Daylight sensors
	6	Substitution of a low efficiency chiller with inverter chiller		2.5	2.5	5		
	7	Substitution of a low efficiency heat pumps with high efficiency		2.5	2.9	5		
	8	Freecooling system	No					
	9	Thermostatic valves for radiators	No					
	10	Variable frequency drives for air handling units by CO2 sensors						
		or occupancy sensors	No					
	11	Variable frequency drives for extraction vents controlled by CO2 sensors or occupancy sensors	No					
	12	Variable frequency drives for air handling units and extraction vents controlled by CO2 sensors or occupancy sensors	No					
Heating,	13	Installation of biomass boiler for heating	Normal boiler		Low temperature boiler	Condensation boiler	District heating network	Electricity
Ventilation and	14	HVAC schedule definition	No					
Air Conditioning	15	Automatically shut off air conditioning or heating when a monitored door or window remains open for a period of time	No					
	16	Substitution of doors	NO CRITERION					
	17	Substitution of windows		2				
	18	Air curtains	NO CRITERION					
	19	Thermal insulation of building envelope		0.35				
	20	Installation of sun shading devices	None		Tinted glazing			
	21	Improve solar factor		0.6				
	22	Substitution of conventional boiler with condensing boiler	Normal boiler		Low temperature boiler			

GREPCon – the process

Craun	Energy Efficiency Measures				
Belo	w you can see all default energy afficiency measures identified by the tool.				
Plea	se select the measures you would like to include in your calculations.				
No.	Measure	Include (yes/no)	No.	Measure	Include (yes/n
1	Substitution of conventional lamps		24	Pipework and boiler insulation	
2	Replacement of lamps ballast		25	Variable frequency drives for pumps	
3	Occupancy and presence sensors		26	Heat recovery systems	
4	Photocell to dim luminous flux based on natural light		27	Water saving aerators	
5	Occupancy and presence sensors combined with photocell		28	Swimming pool heat cover	
6	Substitution of a low efficiency chiller with inverter chiller		29	Substitution or implementation of heat exchanger	
7	Substitution of a low efficiency heat pumps with high efficiency		30	Substitution of conventional boiler with condensing boiler	
8	Freecooling system		31	Substitution of the boiler burner	
9	Thermostatic valves for radiators		32	Pipework and boiler insulation	
10	Variable frequency drives for air handling units by CO2 sensors or		33	Variable frequency drives for pumps	
11	Variable frequency drives for extraction vents controlled by CO2 sensors or		34	Micro Cogeneration	
12	Variable frequency drives for air handling units and extraction vents		35	Geothermal heat pump	
13	Installation of biomass boiler for heating		36	Solar thermal plant	
14	HVAC schedule definition		37	Photovoltaic plant	
15	Automatically shut off air conditioning or heating when a monitored door or		38	Small wind turbine	
16	Substitution of doors		39	Micro hydropower	
17	Substitution of windows		40	Capacitive power factor correction	
18	Air curtains		41	Building Energy Management System	
19	Thermal insulation of building envelope		42	Substitution of hydraulic motors with electric motors in elevators	
20	Installation of sun shading devices		43	Substitution of conventional pumps with high efficiency pumps	
21	Improve solar factor		44	Implementation of Energy Star procedure in computers	
22	Substitution of conventional boiler with condensing boiler		45	Substitution of conventional computer monitors with TFT	
23	Substitution of the boiler burner		46	Substitution of conventional appliances with efficient appliances	
	VALIDATE DEFAULT MEASURES			CANCEL	

GREPCon – the process (technical)

EPC F	EPC RECOMMENDATION SHEET								
	Energy Efficiency Measure 2								
F	Replacement of lamps ballast								
Measure automatically identified? Building system link:									
Recommendation criterion type:	Lamp ballast type								
Number of possible criteria: Number of criteria met:	1								
	Measure criteria								
Criterion 1: Standard ballasts		Criterion met? Yes							
Total system consumption: Total sub-system(s) consumption:	724,048 kWh/year 718,848 kWh/year								


GREPCon – the process (financial)

PROJECT GENERAL DATA					PROJECT SPECIFIC DATA	1	
Project indexes		Project financial data			RESULTS (€)		
(1)Energy inflation rate (2)General inflation rate (3)Euribor (select) (4)Spread Interest	0,0% 1,0% 2,0% 2,0%	(8)Project direct investment (9)% of additional expenses (10)% of Grant (subsidies) Total investment amount	€	233.738 1% 0% 236.075	Income (Sales) (17) Energy savings (18) Energy production (19) Water savings	€ €	38.159 28.580 2.742
rate (5)Loan formalisation fee	4,0% 0,5%	(11)% debt % equity		20%	(20) Incentives	€	6.837
(6)EPC Loan repayment term (years)	10	Debt	€	188.860	Expenses	€	-
(6bis)Loan repayment term (years)	10	Equity	€	47.215	(21) Energy supply		
(7) EBT tax rate	28%	Grant		0	(22) O&M		
		(12)K asset (required return) (13)K equity (required return) (14)% of investment subject to depreciation	n €	9% 9% 100% 236.075	(23)Overhead (24)Client shared savings (%):		1,0% 0,0%
		(15)Working capital requirements (% of income)		16,7%	(2)/elion elialed editinge (/e).		0,070
		(16)EPC Depreciation period (years)		10	(25)EPC Project duration (years)		10
		(16bis)Asset Depreciation period (years)		11	(25bis)ESM Project Horizon (years)		20

GREPCon – the process (financial)

	Best	Base	Worst
Income - energy and water savings	+	=	-
Income - energy production	+	=	-
Investment overcost	N/A	=	+
O&M overcost	N/A	=	+
Energy inflation rate	+	=	-
General inflation rate	+	=	-
Interest rate	-	=	+

www.trustepc.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 649772

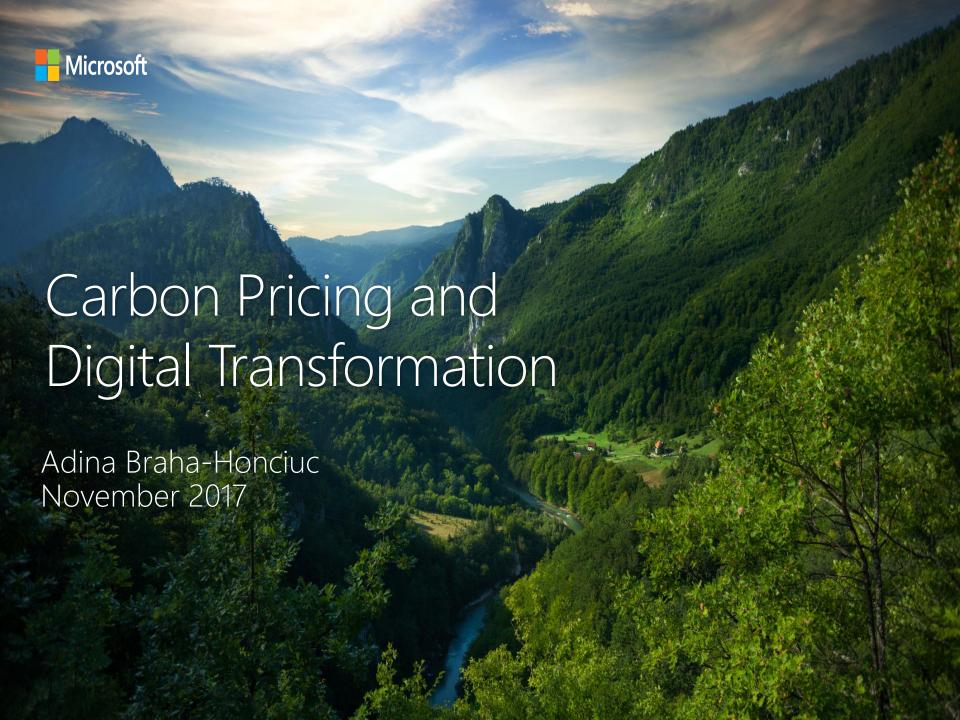
Thank you for your attention

Contact: Jakub Bartnicki

email: jakub.bartnicki@uk.bureauveritas.com

Contact: Paolo Michele Sonvilla

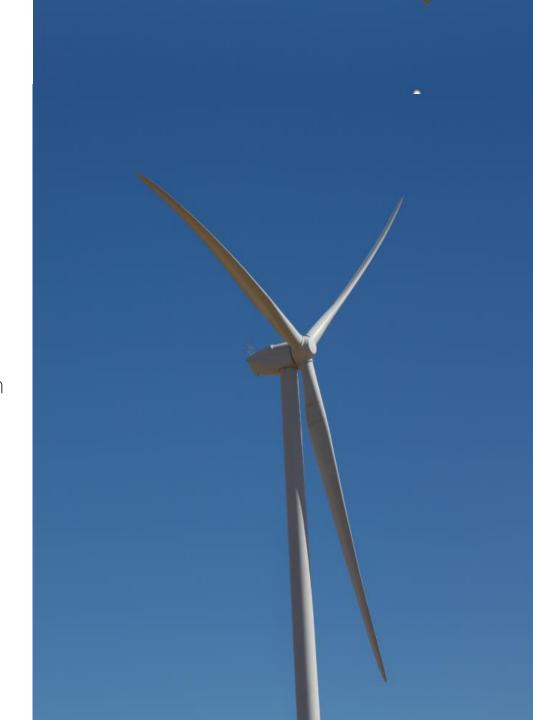
email: pms@creara.es


Carbon Pricing and Digital Transformation

Adina Braha-Honciuc

Government Affairs Manager – EU Policy

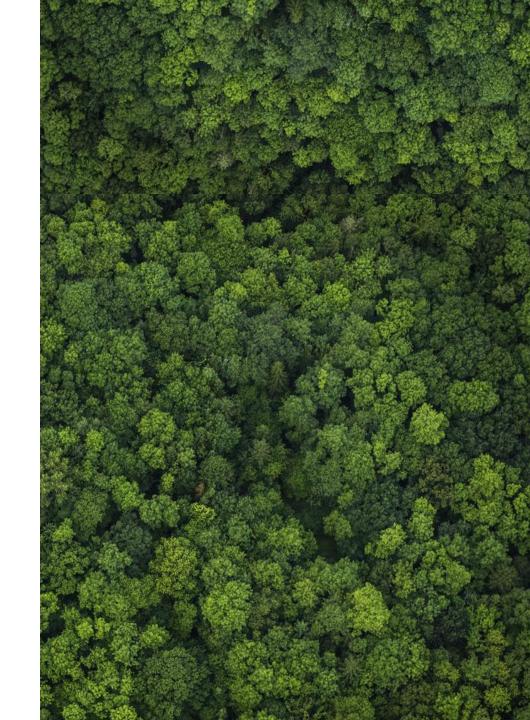
Tuesday, 27th June 2017


Empower every person and every organization on the planet to thrive in a resource-constrained world.

Energy

OPERATIONAL GOAL
Use 50% wind, hydro and solar by 2018,
60% early next decade and improve from there

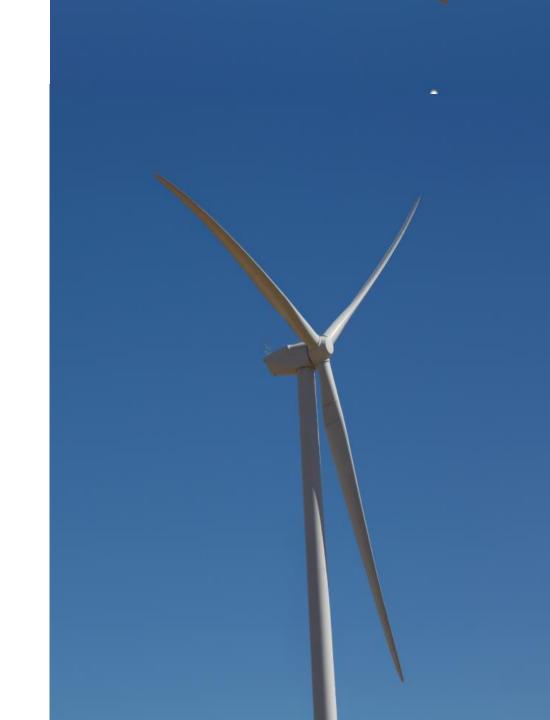
SOCIETAL GOAL
Help green the grid and accelerate the transition to a zero-carbon energy future



Carbon Commitments

OPERATIONAL GOAL Reduce carbon emissions 75% by 2030 relative to 2013 base year

SOCIETAL GOAL
Enable the measurement and
management of global carbon and
climate change impacts



Carbon Fee Mechanics

Track carbon emissions from operation of our datacenters, labs, offices, manufacturing sites, and business air travel

Charge business groups a carbon neutral fee for their portion of emissions

Invest in renewable energy, carbon offsets, sustainability grants, and emissions tracking/reporting

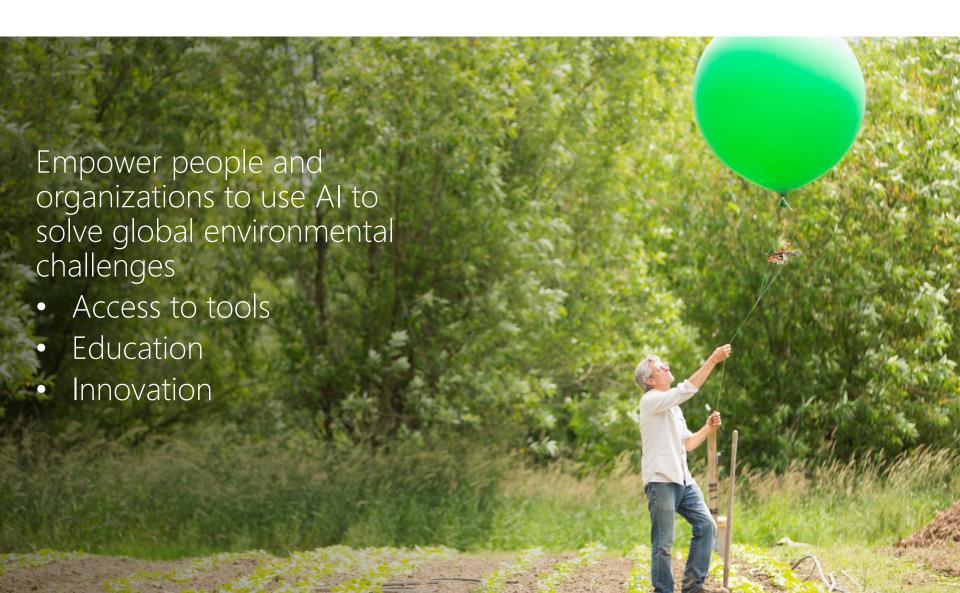
Operational Results

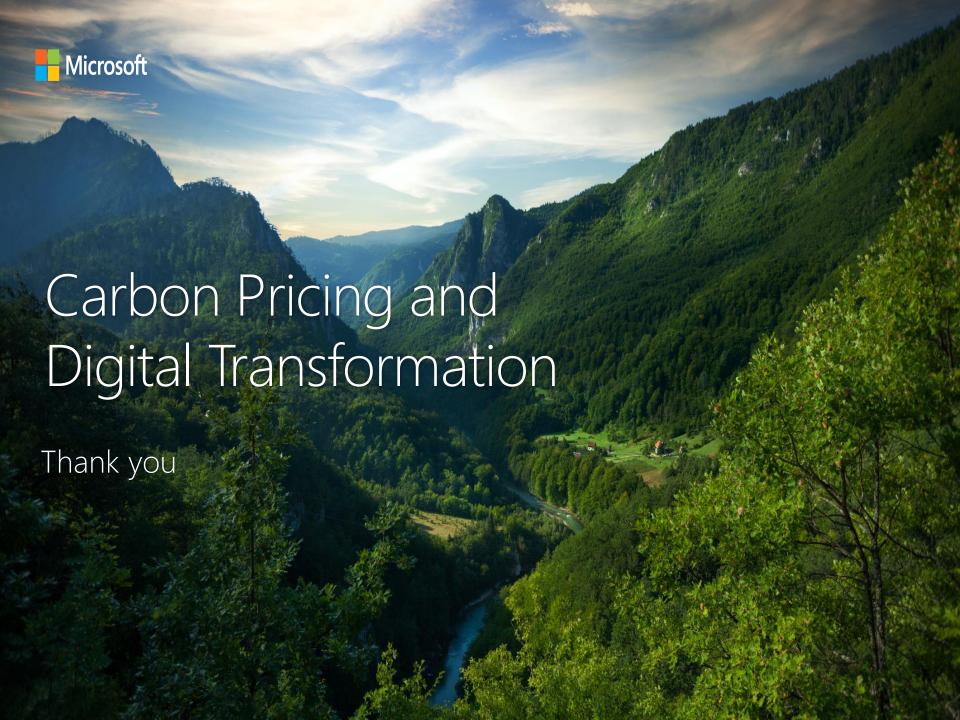
Carbon neutrality: 9 million tons of carbon equivalent reduced

100% renewable energy: 14 billion KWh of green power

Digital Transformation for Sustainability

Energy: Off-grid clean energy access, Agder Energi distributed energy resource optimization


Carbon: WattTime real-time carbon emissions platform


Water: Ecolab Water Risk Monetizer

Biodiversity and Agriculture: Land cover mapping, Project Premonition, FarmBeats

Al for Earth

Can Data Center Designs green the sector for everyone with ROI benefits...

Derek Webster

CEO - Data Center Consultancy Andget

Tuesday, 21st November 2017

Data Centers to consume 3X more energy in next 10 years...

- 416 Terawatt hours: World electricity used by data centres in 2015. More than UK's total electricity consumption.
- Data centres: Repositories for billions of gigabytes of data and make the Internet and Telecoms Work.
- 3% Global electricity and about 2% greenhouse gas emissions.
- Internet penetration: best GDP impact & ROI of any infrastructure spend (outside of Water in developing nations)

Nearly Zero Energy Consumption

How to reduce energy consumption to minimize their environmental impact

Derek Webster Board Member

DATA CENTRES

21st June 2017 Charlemagne building

Rue de la Loi 170. BRUSSELS

A Data Centre 'Efficiently Supporting Digital Work Loads'

IoT
Big Data
Storage
Apps
Telecoms
Social Media
Mobile
Shopping
Cloud ...

100kW **Data Centre** power can* support 1MW of Digital Workload = 9.1% of the total power need *

50 Watt **Server** utilization of 10% (typical dedicated) = **5**% efficiency (15 Watts of work = 300 Watts DC power) *

Reduce Data Centers energy consumption to minimize environmental impact

Power Generation

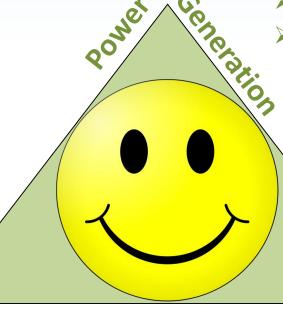
- Green Source & capacity
- Sustainable Mix & Grid
- RE-USE of Energy option

Data Centre Location

- Climate
- Infrastructure
- RE-USE of Energy option

ICT Hardware

- Utilization
- Efficiency
- Automation


'Business Case'

Enterprise / Market

Policy

2009 Data Centre now a Proven Project with wider thinking ...

- Less carbon cost by keeping existing building
- ◆ Roman remains work with Archaeologist
- Rain Water capture for cooling
- ◆ High Efficiency Design PUE 1.1 = 1.1
- District Heating usage
- ●95% Hydro power option to pay tariff for 100% green energy. —

We wanted to Build This ... in Europe

Bought this ... Instead

...and Built this

e.g.
Keep as much as you can ...
I put a roof on the roof to keep the roof = saves CO₂ foot print and \$

ICTF00TPRINT EU

In a small town called Avanches: Roman Town with Roman Remains

Our Romans

Conserve the view and the Flowers

Nearly Zero Energy Consumption

How to reduce Data Center energy consumption to minimize their environmental impact

The Data Centre Industry knows how to build efficient buildings. Improvements to ICT Hardware, Site location, Enterprise using outsourced Scale providers and designs thinking wider are Key.

Thank you for your attention

Thank you

Merci

Danke

Gracias

Děkuji

Dank je

Ευχαριστώ

Obrigado

Grazie

Dziękuję Ci

Ďakujem

Multumesc

Tack

Takk

Tak

Kiitos

Благодаря

Hvala ti

Ačiū

Paldies

Hvala vam

Diolch"

Andget Limited

Derek Webster CFO

71-75 Shelton Street Covent Garden London WC2H 9JQ

+ 44 7739 849621

in Data Centers...

THANK YOU!

STAY TUNED FOR REGULAR UPDATES

the future is sustainable!

www.ictfootprint.eu - Everything is there!

- Register to our Newsletter: ictfootprint.eu/#newsletter
- Contact us by email: contact@ictfootprint.eu
- ▶ Follow us on Twitter: @ICTFOOTPRINTeu
- Connect with us on Linkedin: linkedin.com/in/ictfootprinteu
- See our previous webinars: https://ictfootprint.eu/en/webinar
- Find out our next events: www.ictfootprint.eu/en/all-event
- Know more about our services: www.ictfootprint.eu/en/about/project